
Problem A: Misspelling
Misspelling is an art form that students seem to excel at. Write a program that
removes the Mth character from an input string.

Input
The first line of input contains a single integer N, (1 ≤ N ≤ 1000) which is the
number of datasets that
follow.
Each dataset consists of a single line of input containing M, a space, and a single
word made up of uppercase letters only. M will be less than or equal to the
length of the word. The length of theword is guaranteed to be less than or equal
to 80.

Output
For each dataset, you should generate one line of output with the following
values: The dataset number as a decimal integer (start counting at one), a space,
and the misspelled word. The misspelled word is the input word with the
indicated character deleted.

Sample Input Sample Output
4
4 MISSPELL
1 PROGRAMMING
7 CONTEST
3 BALLOON

1 MISPELL
2 ROGRAMMING
3 CONTES
4 BALOON

Problem B: 01000001
Adding binary numbers is a very simple task, and very similar to the longhand
addition of decimal numbers. As with decimal numbers, you start by adding the bits
(digits) one column at a time, from right to left. Unlike decimal addition, there is little
to memorize in the way of rules for the addition of binary bits:

0 + 0 = 0
1 + 0 = 1
0 + 1 = 1
1 + 1 = 10
1 + 1 + 1 = 11
Just as with decimal addition, when the sum in one column is a two-bit (two-digit)
number, the least significant figure is written as part of the total sum and the most
significant figure is "carried" to the next left column. Consider the following examples:

 11 1 <-- Carry bits --> 1 11
 1001101 1001001 1000111
+ 0010010 + 0011001 + 1010110
--------- --------- ---------
 1011111 1100010 10011101
The addition problem on the left did not require any bits to be carried, since the sum
of bits in each column was either 1 or 0, not 10 or 11. In the other two problems,
there definitely were bits to be carried, but the process of addition is still quite simple.

Input
The first line of input contains an integer N, (1 <= N <= 1000), which is the
number of binary addition problems that follow. Each problem appears on a single
line containing two binary values separated by a single space character. The
maximum length of each binary value is 80 bits (binary digits). Note: The maximum
length result could be 81 bits (binary digits).

Output
For each binary addition problem, print the problem number, a space, and the binary
result of the addition. Extra leading zeroes must be omitted.

Sample Input Sample Output
3
1001101 10010
1001001 11001
1000111 1010110

1 1011111
2 1100010
3 10011101

Problem C: Digital Roots

Background
The digital root of a positive integer is found by summing the digits of the

integer. If the resulting value is a single digit then that digit is the digital root. If the
resulting value contains two or more digits, those digits are summed and the process is
repeated. This is continued as long as necessary to obtain a single digit.

For example, consider the positive integer 24. Adding the 2 and the 4 yields a
value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive
integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process
must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root
of 39.

Input
The input file will contain a list of positive integers(<1080), one per line. The end of the
input will be indicated by an integer value of zero.

Output
For each integer in the input, output its digital root on a separate line of the output.

Sample Input Sample Output
24
39
0

6
3

Problem D: Number

Find the smallest natural number that is not presented in the input.

Input
The first line of input contains integer number N (0< N < 10000). Next line
contains N-1 different integer numbers from the range 1..N.

Output
Output one number 1..N that is not presented in the input.

Sample Input Sample Output
4
1 2 3

4

5
2 1 4 5

3

Problem E: Recursively Palindromic Partitions

A partition of a positive integer N is a sequence of integers which sum to
N, usually written with plus signs between the numbers of the partition.
For example

15 = 1+2+3+4+5 = 1+2+1+7+1+2+1
A partition is palindromic if it reads the same forward and backward. The

first partition in the example is not palindromic while the second is. If a partition
containing m integers is palindromic, its left half is the first floor(m/2)
integers and its right half is the last floor(m/2) integers (which must be the
reverse of the left half. (floor(x) is the greatest integer less than or equal to
x.)

A partition is recursively palindromic if it is palindromic and its left half is
recursively palindromic or empty. Note that every integer has at least two
recursively palindromic partitions one consisting of all ones and a second
consisting of the integer itself. The second example above is also recursively
palindromic.
For example, the recursively palindromic partitions of 7 are:

7, 1+5+1, 2+3+2, 1+1+3+1+1, 3+1+3, 1+1+1+1+1+1+1
Write a program which takes as input an integer N and outputs the number of
recursively palindromic partitions of N.

Input
The first line of input contains a single integer T, (1 ≤ Τ ≤ 1000) which is

the number of data sets that follow. Each data set consists of a single line of
input containing a single positive integer N (1 ≤ Ν ≤ 1000) for which the number
of recursively palindromic partitions is to be found.

Output
For each data set, you should generate one line of output with the following
values: The data set number as a decimal integer (start counting at one), a space
and the number of recursively palindromic partitions of the input value.

Sample Input Sample Output
3
4
7
20

1 4
2 6
3 60

Problem F: Visible Lattice Points
A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal
to 0), other than the origin, is visible from the origin if the line from (0, 0) to (x, y)
does not pass through any other lattice point. For example, the point (4, 2) is not
visible since the line from the origin passes through (2, 1). The figure below shows
the points (x, y) with 0 ≤ x, y ≤ 5 with lines from the origin to the visible points.

Write a program which, given a value for the size, N, computes the number of visible
points (x,y) with 0 ≤ x, y ≤ N.

Input
The first line of input contains a single integer C, (1 ≤ C ≤ 1000) which is the number
of datasets that follow. Each dataset consists of a single line of input containing a
single integer N, (1 ≤ N ≤ 1000), which is the size.

Output
For each dataset, there is to be one line of output consisting of: the dataset number
starting at 1, a single space, the size, a single space and the number of visible points
for that size.

Sample Input Sample Output
4
2
4
5
231

1 2 5
2 4 13
3 5 21
4 231 32549

	Input
	Output
	1 1011111
	Input

